Sharp multidimensional numerical integration for strongly convex functions on convex polytopes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

ON STRONGLY h-CONVEX FUNCTIONS

We introduce the notion of strongly h-convex functions (defined on a normed space) and present some properties and representations of such functions. We obtain a characterization of inner product spaces involving the notion of strongly h-convex functions. Finally, a Hermite–Hadamard–type inequality for strongly h-convex functions is given.

متن کامل

Sharp Error Estimates for Interpolatory Approximation on Convex Polytopes

Let P be a convex polytope in the d-dimensional Euclidean space. We consider an interpolation of a function f at the vertices of P and compare it with the interpolation of f and its derivative at a fixed point y ∈ P. The two methods may be seen as multivariate analogues of an interpolation by secants and tangents, respectively. For twice continuously differentiable functions, we establish sharp...

متن کامل

Approximations of differentiable convex functions on arbitrary convex polytopes

Let Xn := {xi}ni=0 be a given set of (n + 1) pairwise distinct points in R (called nodes or sample points), let P = conv(Xn), let f be a convex function with Lipschitz continuous gradient on P and λ := {λi}ni=0 be a set of barycentric coordinates with respect to the point set Xn. We analyze the error estimate between f and its barycentric approximation:

متن کامل

Bracketing Numbers of Convex Functions on Polytopes

We study bracketing numbers for spaces of bounded convex functions in the Lp norms. We impose no Lipschitz constraint. Previous results gave bounds when the domain of the functions is a hyperrectangle. We extend these results to the case wherein the domain is a polytope. Bracketing numbers are crucial quantities for understanding asymptotic behavior for many statistical nonparametric estimators...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2002601a